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ABSTRACT

A numerical model is developed for the quantitative description of the

dispersion process in a two-layer system which represents an approximation for

a natural coastal water body during the summer season when a distinct thermo-

cline usually exists. The formulation is based on the convection-diffusion

equation, vertically integrated between the layer boundaries. Layer vel-

ocities and thicknesses are assumed to be obtained from a separate hydrodynamic

model. The quantification of the physical processes of entrainment and mixing

through the density interface as well as the horizontal dispersion mechanisms
is discussed.

The finite element method is chosen for numerical implementation because

of its flexibility in grid layout and easier handling of spatial and temporal

variability. Triangular elements with linear interpolation functions are used

for the spatial discretization, while a simple implicit iterative scheme based

on the trapezoidal rule is employed for tism integration. The method is shown to

be unconditionally stable, for an arbitrary grid and both one- and two-layer
problems, when there is no iteration and- the parameters are constant. General

convergence criteria required by the iteration procedure are developed and

expressed in terms of the basic parameters of the problem and are subsequently
confirmed by numerical experiments. Verification of the model is performed by
comparison with analytical solutions derived for counterflow conditions. Finally
the model is applied to a particle dispersion experiment carried out

recently in the Massachusetts Bay and comparisons with field data are presented.

l
Research Assistant, Ralph M. Parsons Laboratory for Water Resources and
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INTRODUCTION

Coastal dispersion problems have received considerable attention in recent
years, due to the rapid growth in the development of the coastal zone and the
increasing concern for the impact on the coastal environment. Mathematical
models of the hydrodynamic processes involved have been developed in the past
based on the assumption that flow parameters and concentrations are approximately
uniform over the water column, resulting in a depth-averaged treatment of the
problem. This approach is justified to some extent by the characteristic shallow-
ness of coastal water bodies, as compared to their horizontal dimensions. However,
the assumption of uniformity is no longer valid during the summer season, when a
significant stratification usually exists.

The presence of a strong thermocline suggests the idealization of the flow
field as a two � layer system. This is the simplest stratified case and it is
felt that it has to be studied prior to proceeding to a multilayer approach, for
understanding the fundamental physical behavior of dispersion in a layered system.
Multilayer or quasi-three dimensional models of the transport of constituents are
presently being incorporated into large multipurpose computer codes [1, 8, 9]
utilizing finite difference techniques. Such models will require difficult and
costly verification studies and extensive field data  especially boundary
conditions! for their proper application to a given area. A simpler two-layer
model needs less "tuning" and is much more economical, while still providing a
good approximation to the actual conditions when a distinct thermocline exists.

In this paper, problems associated with properly describing the dispersion
of matter in a two-layer system are investigated. First, the mathematical
formulation is presented and the modeling of the physical processes involved is
discussed. Then, the details of the finite element method are examined and,
in particular, its stability requirements in this class of problems are established.
Lastly, the applicability of the numerical model to real world problems is
addressed.

MATHEHATICAL FORMULATION

The present model is intended to describe the dispersion of an arbitrary
constituent, possessing vertical mobility, in a two � layer coastal water body of
variable bottom topography and boundary geometry. The velocity field in both
layers as well as the layer thicknesses will be assumed known, presumably



obtainable through a separate hydrodynamic model. By uncoupling the hydrodynamic
and dispersion models, the same flow pattern can be used to investigate very
economically the spreading of several different substances and to experiment with

different source locations, loading strategies, parameter values, etc. However,
this can only be done provided that the constituent of interest does not affect

significantly the flow field or the density structure.

The mass balance of a constituent is expressed by the 3-D convection�
diffusion equation:

Bc B B a
at = Bx x By y az s z uc+q ! � �  vc+q !- �   w � w !c+q ! + p

where

u, v, w are the water velocities in the x,y,z directions

is the particle settling velocity, positive downward

q ,q ,q are diffusive fluxes in the x,y,z directions

p represents generation or decay of the constituent

Integrating between the layer boundaries  Figure 1! and using Leibnitz's rule,
one obtains for the top layer

B ' B
Bt h Bxcdz= � �  uc+q !dz

x Bx!
1 h1 -h

n

 vc~ ! + pdz

I
Dh

+[c  � � ~ !-q ] + [c  � m-w !-q
Dt s s q Dt s i -h

1

tao

~ -g
I

Figure 1: The Two-Layer Idealization

The terms in brackets represent fluxes through the free surface and
interface, respectively. The kinematic condition at the surface requires



[ � � wj =0DR

However, the interface, defined as the position of steepest density gradie>t,

is not necessarily a material surface. We may write in general
Dh

[w+ j =w
Dt -h e

1
and refer to the relative velocity, w, of the water particles with respecte'

to the layer boundary as "entrainment" velocity. This is considered positive

when directed upward, indicating net water motion from the bottom to the top

layer. The other component, q., of the interfacial transport is a diffusive
i

flux and can be expressed in terms of the difference in concentration between

the layers. Approximating the concentration at the interface as the average

value of the two layers, the overall transfer is expressed as:
cl+c2

Q =  w -w !c -q, =  w -w ! + a c -c ! �!
21 e s � h i e s 2

1
2 1

In large water bodies, the erosion of the quiescent lower layer by the upper

�!
21 21 2 12 1

By comparing Equations �! and �! it is evident that

�a!
e 2l 12

o=  m +m !/2 �b!

Several experimental and theoretical investigations in 1-9 two-layer

systems have been carried out in the past mostly with one layer quiescent,

as reviewed in [3, 15, Il]. The one-way rate of transport, usually measured by

the thickening of the moving layer, has been expressed with different velocity

and length scales so that at first only a qualitative agreement between them is

evident. Upon careful examination, however, it may be seen [5 ] that a rather

general expression in terms of the mean flow characteristics can be given,

as follows:

jO U.
m. i

Ri
i

0

i,j = 1,2

layer, moving under the influence of wind or other driving mechanism, is

explained by the one � way transport of water toward the turbulent layer,

In coastal areas, both layers are quite turbulent and possess velocities of the

same order of magnitude, hence water exchange both ways through the interface

should be anticipated. Denoting the respective volumetric rates per unit area

by m2 and m  Figure 2!, the net transfer of material is:



where the overall Richardson number for a 2 � D flow is defined as

g
Ri

 U - U,!
i j

where H is the average layer thickness, i.e., half the depth.

H,

H

Figure 2: Schematization of Interfacial Transport

We introduce now the following notation
n

C = cdz = c H
1 h 11

1

nu = ~ q v = v+v q c = c+c

where the overbar denotes layer average value and the double prime spatial
deviation from that average ~ Then, Equation 2 takes the form

BC
1 B+ �  u C ! + �  v C !B

Bt Bx 1 1 By 1 1

where P includes source, decay
1

dispersive

Q�
1

�b!

The dispersion coefficients

E E
E =   xx xy ! d

E
yx

comprise a second order tensor consisting of a shear � dispersion part and an eddy

diffusivity part. The analogy of the effective horizontal spreading due to

nonuniformity of the velocity profile to the turbulent diffusion process has

fluxes Q , Q are
xl

 u"c"+q !dz
-h
~ 1

 v"c"+q !dz =
1

-- � Q � � Q +PB B
�!

Bx x By y

and interfacial flux terms, and the total

approximated as follows:

Bc Bc
H  E � +E !1

1 xx. Bx xy By

Bc Bc

H  E +E !
1 yx Bx yy By



case where both u and v velocity components are present, one may prove the
validity of Eqs.�a, b! with shear dispersion coefficients given by [5]

o x

0 z

8
[ u"dt;] dz

0
H

[ v" d t:] dz
0

r H 1 H H

[ u"d<][ v"dg]dz
E

0 z 0 0

 8a!

 8b!

d d 1

xy yx H
 Sc!

where c is the vertical eddy diffusion coefficient.
z

The horizontal turbulent diffusion term accounts for mixing due to horizontal
eddies. Based on the theory of locally isotropic turbulence, the well-known

4/3 law is derived. According to [12]

1/3 4/3

where

e. is the rate of energy input

L is a length scale and

b is a numerical constant of order 0. l.

As the cloud size increases, larger scale motions are being incorporated
into the diffusion term, explaining the length dependence of the diffusion
coefficient. It should be clear, however, that this depends on the detail
af specification of the advection processes. In the case that the velocity
field is specified at certain grid points and the cloud increases beyond the
level of discretization, internal mixing is now  partly! described by the

advection terms, and hence the length scale of Equation �! should be related

to the grid size.

An alternative expression for c, based on mixing length arguments, is

[2,6]-

~=i.vy
2

where

!=2  � ! +2  � ! +   � + � !Bu2 Bv2 Bu Bv 2

Bx ay 3y ax

This has the advantage of using the readily

instead of the energy input According to [6

available mean velocity gradients

the sub � grid scale eddy

coefficient is modeled by a length scale an order of magnitude smaller than

been shown initially by G.I. Taylor [14] for flow through a pipe and later
by Elder [7] for flow in an open channel. By extending their arguments to the



the grid size. However, the resolution of the flow field description

associated with spatial averaging in the hydrodynamic model employed has

to be taken into account and the coefficient increased accordingly.

THE FINITE E1EHENT METHOD

For each layer, the governing equation has the form �!. The boundary

conditions are  Figure 3!

1! Essential, i.e., the concentration is specified on the boundary

segment S : C = C*
c

2! Natural, i.e., the normal concentration gradient, or, equivantly, the

normal dispersion flux is soecified on the boundary segment St

Q a Q*
5'

n n

Figure 3: Solution Field and Boundary Conditions

R over the domain is required to vanish:

JJ <sc ~ac a<~! s, a
JJ 3t Bx By Bx x 3y y

+    Q+ � Q !wdS = 0
JS

Employing partial integration, this is rewritten as

R = [   � + �  uC! + �  vC! -P!w � Q � � Q � ] dABC 3 � 3 Bw Bw

Bt Bx By x3x y By

+ Q*wdS = 0
S

�2!

In seeking an approximate solution, the partial differential equation and the

flux boundary condition are multiplied by a weighting function  w! and the residu'al



It should be mentioned that the trial function C is required to satisfy

the essential boundary condition and the weighting function to satisfy the

homogeneous form, i.e., w 0 on S
c

Expression �2! is called the symmetrical weak form and involves only

residuals. By introducing interpolation functions within each element, the
continuous problem is transformed to a discrete one, with the concentrations
at the nodal points as unknowns. Triangular elements with linear interpolation

functions are used herein, as in the one layer model [10]. Setting
e e

C~NC w=dC=NdC

the element residual becomes:

R =  dC !  M = � P ! +  dC ! F �3!

NNdA �4a!

A

3'N BN

p - [N  P � ' �  uC! � �  uC! +,. Q + Q !dA
Bx By B'x x By y

A
N Q*dS

n
e

Carrying out the summation over all elements for each layer results in:

�4b!

�4c!

R!R dC! HC � p+7!=0
e

and since dC is arbitrary,
b

MC=P-F=PN

This constitutes a set of linear ordinary differential equations and is

�5!

integrated by using an implicit iterative trapezoidal scheme, as follows:

C
 i+1! dt � 1 - i! y

-1,t+dt -1,t 2 � -l,t+dt -1,t
�6a!

 i+1! dt � 1,  i!
C-2,t+dt -2,t 2 -Z,t+dt -2,t

�6b!

Since the geometrical matrix M is time-invariant it has to be inverted only

once. By lumping all other terms in the 0 vector, maximum f1exibility in
handling time variability of any or all of the relevant parameters and loadings

is achieved. In addition, any non-linear relations of the various terms to the

concentrations can be readily handled in this way. In practice, the iteration

first derivatives of both trial and test functions, which can therefore be chosen

from the same solution space. In the finite element method the domain is sub-

divided into elements and the total residual is evaluated as the sum of element



continues until either the change in concentration between current and previous
values is below a specified tolerance or the number of iterations reaches aa
imposed upper limit.

STABILITY ANALYSIS

Expanding the P vector leads to the following form of the matrix equation
for each layer

MC + AC + KC + DC = S �7!

where A is associated with advection, K with dispersion, D with decay and
includes sources and boundary conditions. The trapezoidal integration rule

is expressed as follows

[M + �  A+K+D! ]C [N � �  A+K+D! ]CQt
2 n+1 -n+1 - 2 n -n

+ �  S +S !
2 n n+1 �8!

To investigate the stability of the scheme, we consider the homogeneous case,
i.e., S = S 1 = 0, and assume the various matrices are constant over the ti~-n -n+1

step. We note that the geometrical, decay, and dispersion matrices, being

velocity expansions [5J, leads to:

AC = - A C + u N N dS C �9!
S

n

where the superscript b denotes boundary quantity and u is the velocity
n

normal to the boundary  positive outwards!. Writing the advection matrix
as the sum of a symmetric and a skew � symmetric part

A=A +A
8 ss

it is seen that the former usually vanishes since normally S refers to land
boundaries where the normal velocity is zero.

By writing

�0!
C = aC

n+1 n

where a is the amplification matrix, one may set
C

wher

�1!

e A is an eigenvalue of a.

The necessary condition for stability is

»r I!l <1

composed of individual syztnetric positive definite sub-matrices, also have these
properties. Continuity considerations and the compatibility of inter-element
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T
Substituting �1! into the homogeneous form of �8!, premultiplying by 4

and noting that, according to the above discussion

T

C KC

0 DI

4 A4
T

=m>0

0

=d>0

= ia
ss

we obtain f or

[m + �  e+d+ia !] = m � �  K+d+ia !6c . ht

2 ss 2 ss

or 5

[m � �  ~+d!] + a
2 2

SS

[m+ �  <+d!] + a
At 2 2

2 ss

�2!

This indicates that the scheme is unconditionally stable for an arbitrary

grid.

However, the time step is always limited by the desired detail of des-

cription of the time variability of inputs or parameters of the problem.

When the matrices K, D, A are actually variable, it becomes uneconomical to

form and invert matrices of the form M + �  A + K + D! every time � step.
2

This is a basic reason for resorting to the iteration procedure discussed

earlier, which may be written in expanded form:

MC = [M � �  A+K+D! ]C � �  A+K+D! C
--n+1 - 2 - - - n -n 2 � - - n+1-n+1

�3!

For convergence of the iteration, however, a restriction on the time step

is required. The general sufficient condition

M 2  A+K+0!
leads to

�4!

2

 A+K+D! II
or, the more restrictive condition:

�5!
II«Il + I!M KII + IIM DII

1
MU 8E k

"Z ms+ 2+ 2
�6!

Unfortunately, �5! is not practical in this form, since one does not have

an explicit relation between the time step and the parameters of the problem.

An approximation to it can be obtained by considering a single element only,

forming the matrices and evaluating their norms, i.e., their eigenvalues. For

uniform velocity U, isotropic dispersion E and decay rate k, the resulting

expression for an equilateral triangle of size hs is [5]:



-1
This was obtained using the average eigenvalue of the M K matrix. The

same result is arrived at for a right triangle, when the flaw is parallel to one

of the legs of the right angle, of size hs. The conclusions reached at the element

level can be conservatively generalized for the whole domain, provided the worst

case" element is considered.

A similar analysis for the two � layer problem shaws that the time integration

scheme is again unconditionally stable, with no iteration. The latter requires

a restriction on the time step analogous to �5!. Another term has now to be
-1added in the denominator to account for interfacial mixing, i.e., ~ IN E~ ~.

Evaluating this term for a single triangle results in the addition of g'/2 in

the denominator of �6!, where Q' is the interfacial mixing rate norma] ized by

the layer thicknesses. This term is usually small and consequently the time

step is essentially governed by the "worst" layer.

Experimental conf irmation af condition �6! was attempted by means of test runs

carried out in the 1-D grid shown in Figure 5. The contribution of the decay term

was of the order of lX and thus neglected. For each run, a point was plotted on
2

the plane of the non-dimensional coordinates  Uht/b,s, Eht jhs !. These points are

shown in Figure 4 along with the theoretical bound �6!. The:symbols used are

defined in Table l. Zt is seen that runs corresponding to points within the "safe"

area always converge well, while outside the theoretical boundary more or less

significant errors are present, eventually leading to instability a little further

outside. Further, the line E/Uhs = 1/2 is seen ta exactly separate runs with and

without significant upstream negatives and spatial oscillations due to the

approximation of steep concentration gradients. This condition, analogous to finite

difference schemes, was derived theoretically [5] and earlier empirically [10].

Thus, accuracy considerations actually reduce the acceptable area to a fraction of

the safe region for iteration convergence. Additional runs, carried aut in

2-D test grids, as well as grids of natural water bodies, compiled in [5], show

the theoretical limit to be still approximately valid.

VERIFICATION AND APPLICATIONS

To test the correctness of the model structure, comparisons with analytical

solutions are desirable. However, the availability of analytical solutions is

restricted to very simple flow conditions. In Figure 6, the numerical model is

compared with the solution for an instantaneous point source in the top layer of

a 1 � D counterflow. A unit load is distributed between the three nodes at x = 0
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Figure 4 Comparison of Theoretical Bound on the Time Step with 1-D Runs

Table l

Definition of Symbols used in Figure 4

Ubh

hs
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of the grid of Figure 5, and the results adjusted to yield values per unit width

of the channel. A unit depth is assumed for each layer. Zero concentration is

specified at the ends of the grid and zero flux is prescribed along the side
boundaries. The parameters used are

U = � U = 0.05 m/sec
1 2

E = E = 0.01 19 /sec
-4

a = 5 x 10 m/sec

K ~ 0

It may be observed from Figure 6 that the lower layer concentrations are two
orders of magnitude smaller than those of the top layer . This supports to some
extent the treatment of the interface as a barrier. However, it may not hold
for longer time periods and is certainly not valid for substances possessing
vertical mobility. Irrespective of that, it should be clear that a great advantage
of the two-layer treatment is the more detailed description of the velocity field.
In this particular counterflow case the depth-average velocity is zero, implying
a stationary peak of the depth-averaged concentration distribution located at

the origin. As shown in Figure 6, this is far from the actual depth-averaged
concentration distribution of the two-layer system. Further verification studies
can be found in [5].

To establish confidence in the predictive capability of the model and the
degree of its applicability under natural conditions, further verification,
consisting of comparisons to real-world cases, is necessary. For this purpose a
dispersion experiment was carried out by M.I.T-, sponsored by the Boston Edison
Co., in the vicinity of the Pilgrim Nuclear Power Station  PNPS! on the

Massachusetts coast . Figure 7! in August 1975. Five hundred pounds of small
fluorescent sphalerite  ZnS! particles were introduced into the water and

their motion subsequently monitored for 5 days by boat and by helicopter.
Also, two current meter stations had been installed prior to the experiment as
indicated in Figure 7 by dots.

The finite element grid used was the same as in the previous applications of
2one-layer models to the Bay. The value of the dispersion coefficient, 30 m /sec,

and the difference in tidal amplitude between the ends of the open boundary, were
kept the same as established for the one � layer models [13]. The circulation model

used to obtain velocity inputs is that of Wang and Connor [16]. Since it requires
both layers to extend over the whole domain, some nodal depths had to be increased
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to at least 15 m in order to avoid intersection of the interface with the bottom.

The position of the interface was set at 8 meters as initial condition, consistent

with available information [4!. However, much more detailed data are needed for

the specification of interface motion along the ocean boundary. In view of

lack of such data at present, the interface was assumed to be linear along the

boundary and various cases, e.g. remaining fixed over the tidal cycle or

~oving with the same amplitude as the free surface, were examined. Actual

time � varying wind data were used in the computations.

Figure 7 Mass. Bay Finite Element Grid and
Location of the MIT Experiment



The experimental results were reduced to layer � average concentrations

averaging together samples taken above and below the thermocline to yield a

single representative value for each layer. The resulting plots, in particl

are shown in Figures 8 and 9 corresponding to 2 and 3 days after the «mp»g

took place. The pl~me is seen to move slowly to the southeast, appro»ma«iy

parallel to the shore and later extending to the east.

In the dispersion simulations the shaded triangle was loaded over a period

of three timesteps. The area of the triangle is quite large in comparison to the

actual source and as a consequence one should expect unrealistically large plume
-5

areas for short times. The interfacial mixing rate is set at lO mlsec and the
� 5

settling velocity at 7.3 x 10 m/sec, based on an average particle size of 7

microns. The computed concentrations 2 and 3 days after the injection are shown

in Figures 10 and ll. Taking into account the initial spreading of the source,

good qualitative agreement with respect to the size and location of the plume

as well as the peak values is observed.

CONCLUSION

The objective of this study was to investigate the problem of dispersion

in coastal water bodies under conditions of strong stratification. The two-layer

idealization was adopted as a useful extreme case and, at the same time, the

easiest to handle mathematically. The ability of the two � layer treatment to handle

transport between the layers is important, whether or not the constituent of

interest has some vertical mobility, in providing a refined picture of the dis-

tribution over the depth. A further advantage of the two-layer formulation,

evident from both ideal and real � world applications, lies in the more detailed

description of the velocity field. However, the sensitivity of the results to

variations in the flow field points out the necessity for using realistic current

input.

Additional fundamental research is needed for better understanding the turbulent

mixing processes in stratified environments. Also, field monitoring programs are

required to provide reliable inputs, primarily on the behavior of the interface

along open boundaries of the domain under consideration. It is believed that the

present two-layer model, providing an extreme � case picture of the response of the

physical system, can be a useful tool in coastal dispersion studies.
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Figure 10 Computed Concentrations at Day D+2
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Figure Il Computed Concentrations at Day D+3
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